The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates.

نویسندگان

  • R Colangeli
  • A Haq
  • V L Arcus
  • E Summers
  • R S Magliozzo
  • A McBride
  • A K Mitra
  • M Radjainia
  • A Khajo
  • W R Jacobs
  • P Salgame
  • D Alland
چکیده

Mycobacterium tuberculosis has evolved a number of strategies to survive within the hostile environment of host phagocytes. Reactive nitrogen and oxygen intermediates (RNI and ROI) are among the most effective antimycobacterial molecules generated by the host during infection. Lsr2 is a M. tuberculosis protein with histone-like features, including the ability to regulate a variety of transcriptional responses in mycobacteria. Here we demonstrate that Lsr2 protects mycobacteria against ROI in vitro and during macrophage infection. Furthermore, using macrophages derived from NOS(-/-) and Phox(-/-) mice, we demonstrate that Lsr2 is important in protecting against ROI but not RNI. The protection provided by Lsr2 protein is not the result of its ability to either bind iron or scavenge hydroxyl radicals. Instead, electron microscopy and DNA-binding studies suggest that Lsr2 shields DNA from reactive intermediates by binding bacterial DNA and physically protecting it. Thus, Lsr2 appears to be a unique protein with both histone-like properties and protective features that may be central to M. tuberculosis pathogenesis. In addition, evidence indicates that lsr2 is an essential gene in M. tuberculosis. Because of its essentiality, Lsr2 may represent an excellent candidate as a drug target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection

Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rat...

متن کامل

Transcriptional Regulation of Multi-Drug Tolerance and Antibiotic-Induced Responses by the Histone-Like Protein Lsr2 in M. tuberculosis

Multi-drug tolerance is a key phenotypic property that complicates the sterilization of mammals infected with Mycobacterium tuberculosis. Previous studies have established that iniBAC, an operon that confers multi-drug tolerance to M. bovis BCG through an associated pump-like activity, is induced by the antibiotics isoniazid (INH) and ethambutol (EMB). An improved understanding of the functiona...

متن کامل

A Histone-Like Protein of Mycobacteria Possesses Ferritin Superfamily Protein-Like Activity and Protects against DNA Damage by Fenton Reaction

Iron is an essential metal for living organisms but its level must be strictly controlled in cells, because ferrous ion induces toxicity by generating highly active reactive oxygen, hydroxyl radicals, through the Fenton reaction. In addition, ferric ion shows low solubility under physiological conditions. To overcome these obstacles living organisms possess Ferritin superfamily proteins that ar...

متن کامل

Mycobacterium tuberculosis Lsr2 Is a Global Transcriptional Regulator Required for Adaptation to Changing Oxygen Levels and Virulence

UNLABELLED To survive a dynamic host environment, Mycobacterium tuberculosis must endure a series of challenges, from reactive oxygen and nitrogen stress to drastic shifts in oxygen availability. The mycobacterial Lsr2 protein has been implicated in reactive oxygen defense via direct protection of DNA. To examine the role of Lsr2 in pathogenesis and physiology of M. tuberculosis, we generated a...

متن کامل

Rapid purification of HU protein from Halobacillus karajensis

The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 11  شماره 

صفحات  -

تاریخ انتشار 2009